Step of Proof: outl_wf |
12,41 |
|
Inference at *
Iof proof for Lemma outl wf:
A, B:Type, x:(A + B). (
isl(x)) 
(outl(x)
A)
by ((RepD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C)) (first_tok :t) inil_term)))
C1:
C1: 1. A : Type
C1: 2. B : Type
C1: 3. x : A + B
C1: 4.
isl(x)
C1:
outl(x)
A
C.